Plasmon-enhanced organic field effect transistors
Abstract
The low cost and ease of fabrication of organic electronics is often overlooked due to their lower performance parameters and poor stability under atmospheric conditions. Thus, steps need to be taken to improve technology in meaningful ways to compete with their inorganic counterparts. In this context, the integration of plasmonic materials and nanostructures into the channel or gate dielectric of organic field transistors (OFETs) enables improvements in the performance and function of phototransistors, transistor-based optical memory devices, organic light emitting transistors (OLETs) and organic electrochemical transistors (OECTs). Plasmonic nanoparticles have been used to fabricate the floating gate of FET memory devices and generate adaptable shifts in the threshold voltage. The detection sensitivity of OECTs was enhanced by the local electromagnetic field enhancement effect and improved electron transfer effect associated with gold nanoparticles integrated into the OECT. Schottky barrier phototransistors integrated with chiral plasmonic nanoparticles enable detection of circularly polarized light. In OLETs, integration with surface plasmons improves local electroluminescence yields as well as the directionality of emission and the light outcoupling efficiency. Graphene plasmons achieved strong confinement of THz radiation and thus enabled gated terahertz detectors.
- This article is part of the themed collection: Journal of Materials Chemistry C Recent Review Articles