Vapor phase polymerization of thieno[3,4-b]thiophene–tosylate and its application for dynamic structural coloration†
Abstract
Conducting polymers are important for areas including energy storage, displays, sensors, nanooptics, and bioelectronics. Vapor phase polymerization (VPP) of conducting polymers can provide highly conductive homogenous thin films but was so far reported only for a limited number of materials. Here, we report VPP deposition of the low bandgap conducting polymer poly(thieno[3,4-b]thiophene):tosylate (pT34bT:Tos) and propose an application for dynamic structural coloration. Optimized films show high electrical conductivity of around 750 S cm−1, manifested optically as wide infrared absorption extending beyond 2000 nm. Electrochemical reduction reveals a neutral low bandgap peak around 1030 nm, making pT34bT comparably transparent also in its neutral state as opposed to other common conducting polymers. Moreover, the VPP process allows to spatially control the polymer properties and thickness via a UV exposure step before polymerization. We exploit this technique to create structurally colored images using the polymer as cavity spacer layer, locally varying its thickness and optical properties. We finally demonstrate dynamic tunability of structural colors based on the application of different potentials in an electrochemical cell.