Chemoenzymatic total synthesis of the antibiotic (−)-13-deoxytetrodecamycin using the Diels–Alderase TedJ
Abstract
The tetrodecamycins are tetracyclic natural products that exhibit potent antimicrobial activity against a multitude of drug-resistant pathogens. These compounds are structurally distinguished by the presence of a tetronate ring and trans-decalin with six contiguous asymmetric centres united by a seven-membered oxygen heterocycle. Herein we describe the first total synthesis of the antibiotic (−)-13-deoxytetrodecamycin. Our strategy is predicated on an enantioselective [4 + 2]-cycloaddition catalysed by the FAD-dependent Diels–Alderase TedJ, forming the trans-decalin with concomitant creation of two rings and four contiguous stereocenters with exquisite selectivity under mild conditions. In complementary studies, in vitro enzyme assays, X-ray crystallography and computational modelling are used to provide molecular insights into the TedJ catalysed reaction. These studies illustrate the power of adopting a chemoenzymatic approach for the enantioselective synthesis of a target compound which would be difficult to achieve using non-biological methods and provide a practical demonstration of the use of Diels–Alder biocatalysts in total synthesis. This approach has potentially widespread value in the global challenge of discovery and development of new antibiotics.