High-efficiency non-doped near-ultraviolet OLEDs achieved by regulating excited-state spatial distribution through molecular optimization to realize hybridized local and charge-transfer (HLCT) characteristics.

Abstract

The development of high-performance near-ultraviolet organic light-emitting diodes (NUV-OLEDs) remains challenging due to their intrinsic wide-bandgap characteristics. Therefore, this study fully exploits the weak electron-accepting characteristics of the PPI group, combined with its high photoluminescence quantum yield (PLQY) and excellent thermal stability. Through a precise molecular structure modulation strategy involving: direct introduction of electron-donating diphenylamine groups into side phenyl ring and systematic integration of donor/acceptor units with tailored electronic properties into main backbone, effective control of excited-state characteristics and their spatial distribution was successfully achieved. Based on this molecular design concept, four near-ultraviolet luminescent molecules (TPA-PPI, DTPA-PPI, TPAAd-PPI, and TPA-POPPI) with hot-exciton properties were successfully developed, significantly improving the material's PLQY and electroluminescence (EL) performance. Notably, compared to analogous structures, the TPAAd-PPI derivatives demonstrate significantly enhanced PLQY and EL performance. Specifically, the external quantum efficiency (EQE) was substantially improved from 4.0% for DMP to 12.1%, while the CIEy coordinate decreased from 0.053 to 0.048, achieving near-ultraviolet emission. Remarkably, the non-doped device based on TPA-POPPI achieved a record-high EQE of 13.8%. These outstanding results underscore the significant potential of this innovative molecular design strategy for developing high-performance NUV-OLEDs.

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Jul 2025
Accepted
25 Aug 2025
First published
25 Aug 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

High-efficiency non-doped near-ultraviolet OLEDs achieved by regulating excited-state spatial distribution through molecular optimization to realize hybridized local and charge-transfer (HLCT) characteristics.

D. Zhong, R. Zhu, J. Zhang, P. Tao, B. Su, X. Yang, Y. Sun, L. Yue, G. Zhou and W. R. Wong, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC05064B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements