Unconventional pathway for the gas-phase formation of 14π-PAHs via self-reaction of the resonantly stabilized radical fulvenallenyl (C7H5˙)†
Abstract
Resonantly stabilized free radicals (RSFRs) are contemplated to be the reactive intermediates in molecular mass-growth processes leading to polycyclic aromatic hydrocarbons (PAHs), which are prevalent in deep space and on Earth. The self-reaction routes of two RSFRs have been recognized as fundamental but more-efficient pathways to form fused benzenoid rings. The present experiment, which exploits a chemical microreactor in combination with an isomer-selective identification technique through fragment-free photoionization utilizing a tunable vacuum ultraviolet (VUV) light in tandem with the detection of the ionized molecules by a high-resolution reflection time-of-flight mass spectrometer (Re-TOF-MS), provides compelling evidence for the formation of phenanthrene and a minor amount of anthracene in the presence of fulvenallenyl (C7H5˙). Further theoretical calculations of the potential energy surfaces of C14H10 and C14H11 reveal that phenanthrene and anthracene can be efficiently produced via a hydrogen-assisted multi-step mechanism [C7H5˙ + C7H5˙ → i3, i3 = (3,4-di(cyclopenta-2,4-dien-1-ylidene)cyclobut-1-ene); i3 + H → phenanthrene + H/anthracene + H or i3 + H → i8 + H → phenanthrene + H/anthracene + H, i8 = (1-(cyclopenta-2,4-dien-1-ylidene)indene)] at low pressures, rather than through the one-step recombination–isomerization of fulvenallenyl radicals. This study provides a novel growth mechanism for tricyclic PAHs, especially in hydrogen-rich environments such as combustion and interstellar environments, which advances the knowledge of PAH propagation and even the formation mechanisms of carbonaceous nanoparticles in our universe.

Please wait while we load your content...