Strengthened d–p orbital hybridization and hydrogen diffusion in a hollow N-doped porous carbon/Ru cluster catalyst system for hydrogen evolution reactions

Abstract

Developing advanced catalysts with rapid hydrogen evolution reaction (HER) kinetics in alkaline media is vital for hydrogen production. Through the d–p orbital hybridization effect, the electronic structure and H* adsorption can be optimized on metal species. Herein, a N-doped hollow carbon (H-NPC)-supported Ru cluster (c-Ru@H-NPC) catalyst was constructed via carbonization of well-defined hollow metal–organic frameworks, followed by etching and anchoring of Ru clusters. The hollow structure could not alter the coordination number of Ru while exhibiting higher-level electron transfer, thereby strengthening the orbital hybridization. Additionally, finite element simulations indicated the acceleration of H2 diffusion for hollow structures. Furthermore, the N-doping strengthened the electron interaction of Ru–C by the d–p hybridization effect, which was confirmed by theoretical calculations and in situ Raman spectroscopy. Therefore, in alkaline/alkaline seawater media, c-Ru@H-NPC needed only 10/12 mV overpotentials and 1.52/1.55 V cell voltages to drive the HER and overall water splitting, respectively, at a current density of 10 mA cm−2, exhibiting outstanding catalytic activity. Meanwhile, the attenuation of current density was very small towards successive stability tests for >55 h at 10 mA cm−2. This work permits new insights into the design of high-performance metal cluster catalysts for the HER and other conversion reactions.

Graphical abstract: Strengthened d–p orbital hybridization and hydrogen diffusion in a hollow N-doped porous carbon/Ru cluster catalyst system for hydrogen evolution reactions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
16 Dec 2024
Accepted
23 Jan 2025
First published
24 Jan 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Strengthened d–p orbital hybridization and hydrogen diffusion in a hollow N-doped porous carbon/Ru cluster catalyst system for hydrogen evolution reactions

R. Li, H. Zhao, L. Wang, Q. Zhou, X. Yang, L. Jiang, X. Luo, J. Yu, J. Wei and S. Mu, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D4SC08498E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements