Issue 5, 2025

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces

Abstract

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps. We reproduce interfacial structures consistent with ab initio molecular dynamics (AIMD) results and obtain diffusion and reorientation dynamics in agreement with the experiment. We show that the hydrogen bonds at the interface become stronger than those in bulk water, which makes the diffusion, reorientation, and hydrogen-bond dynamics slower. Our findings reveal that the spatial correlation of desorption events, driven by the breaking and making of hydrogen bonds, accelerates water exchange dynamics. These dynamics occur on timescales of several hundred picoseconds at 337 K and 302 K. We take a solid step forward toward studying the in situ interface water dynamics and attribute the fast water exchange dynamics to the spatial correlation of the desorption events.

Graphical abstract: Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces

Supplementary files

Article information

Article type
Edge Article
Submitted
13 Oct 2024
Accepted
19 Dec 2024
First published
23 Dec 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 2325-2334

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces

F. Wang, J. Zhu, C. Liu, K. Xiong, X. Liu and J. Cheng, Chem. Sci., 2025, 16, 2325 DOI: 10.1039/D4SC06967F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements