Time-resolved and theoretical analysis of Mo-carbene transformations in metathesis of ethylene with 2-butene†
Abstract
Although supported Mo-containing catalysts have been extensively investigated in the metathesis of ethylene with 2-butene to propene, the mechanisms of the formation and transformation of catalytically active Mo-carbenes in the course of the reaction are still not fully understood. The difficulties arise because only a tiny fraction of MoOx species can form Mo-carbenes in situ, making the detection of the latter by spectroscopic means very unlikely. Herein, purposefully designed steady-state and transient experiments including their kinetic evaluation and density functional theory calculations enabled us to elucidate mechanistic and kinetic details of the above reaction-induced processes in the metathesis reaction over a Mo/P/SiO2 catalyst at 50 °C. We established that, in parallel with the desired reaction cycle, molybdacyclobutanes also undergo reversible structural transformations which might be one of the reasons for low steady-state catalyst activity. Based on the results obtained, strategies for controlling the concentration of the inactive species and accordingly catalyst activity have been suggested and experimentally validated.