Removing redundancy of the NCN codons in vitro for maximal sense codon reassignment

Abstract

Expanding the genetic code affords exciting opportunities for synthetic biology, studies of protein function, and creation of diverse peptide libraries by mRNA display. Maximal expansion with the standard 64 codon code requires breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. In E. coli these 61 codons are decoded by 46 different tRNAs. Moreover, many codons are decoded by multiple tRNAs, further complicating efforts to break this redundancy. The overlapping decoding patterns of the 11 tRNAs in E. coli which read the 16 codons that encode serine, proline, threonine, and alanine codons exemplify this difficulty. Here we tackle this challenge by first outlining a general process to evaluate codons for their potential for reassignment. We then use this knowledge to assign these 16 codons to 10 different amino acids, more than doubling their encoding potential. Our work highlights the expanded potential of sense codon reassignment and points the way to a dramatically expanded code containing more than 30 monomers.

Graphical abstract: Removing redundancy of the NCN codons in vitro for maximal sense codon reassignment

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
04 Oct 2024
Accepted
10 Apr 2025
First published
22 Apr 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Removing redundancy of the NCN codons in vitro for maximal sense codon reassignment

C. A. Jones, C. A. Makovsky, A. K. Haney, A. C. Dutra, C. A. L. McFeely, T. A. Cropp and M. C. T. Hartman, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D4SC06740A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements