Phosphomolybdic acid-induced synthesis of self-incorporated flexible Ni(OH)2 nanosheets with enhanced photoreactivity
Abstract
The rational design of flexible and crumpled nanosheet hybrid materials integrating heteropoly acids (HPAs) and metal hydroxides offers great potential for advanced photocatalytic applications. However, conventional syntheses often require complex ligands or templates. Here, we report a ligand-free solvothermal approach to fabricate a structurally unique phosphomolybdic acid (PMA)-nickel hydroxide Ni(OH)2 hybrid using a simple solvent system, avoiding long-chain stabilizers. The incorporation of PMA into the reaction system induces a flexible, crumpled nanosheet morphology, as confirmed by electron microscopy, while preserving the Keggin structure of PMA. This synergistic integration endows the hybrid with exceptional photocatalytic activity, achieving ∼97% degradation of methylene blue (MB) under light illumination using a 20 W power LED, outperforming pure Ni(OH)2 (74%) due to enhanced charge separation. Moreover, the hybrid exhibits outstanding recyclability over four cycles without performance loss, attributed to its robust structural integrity. Beyond photocatalysis, the flexible yet stable architecture of PMA-Ni(OH)2 suggests potential for energy storage or sensing applications. This work demonstrates a facile, scalable route to POM-based hybrids and highlights their multifunctional versatility through tailored nanoarchitectonics.

Please wait while we load your content...