Porous polylactic acid fibers synthesized by centrifugal spinning with phase separation for oil removal application†
Abstract
The development of environmentally friendly oil-absorbing fibrous materials is crucial, as conventional separation materials contribute to secondary pollution due to their nondegradability. In this study, highly hydrophobic and superoleophilic porous polylactic acid (PLA) fibers were fabricated via centrifugal spinning combined with nonsolvent-induced phase separation. The fiber porosity was controlled by adjusting the ratio of good solvents to nonsolvent in the spinning solution. The morphology and physical properties of the PLA fibers were systematically analyzed. Among the prepared samples, PLA fibrous membranes spun from a chloroform/dimethylformamide (80/20 w/w) solution exhibited a high water contact angle and superior oil absorption capacity. These results demonstrate the potential of porous PLA fibers as sustainable materials for environmental applications.