The effect of the dual scale surface topography of a surface-modified titanium alloy on its bactericidal activity against Pseudomonas aeruginosa†
Abstract
The rapid advancement of antibacterial nanostructured surfaces indicates that they will soon be integrated into real-world applications. However, despite notable progress, a comprehensive understanding of the antibacterial properties of nanostructures remains elusive, posing a critical barrier to the translation of this in vitro technology into practical applications. Among the numerous antibacterial nanostructures developed, nanowire structures play an important role due to their enhanced efficacy against bacteria and viruses and their ease of fabrication. Antibacterial nanowire structures exhibit the dual capability of lysing bacteria upon surface adhesion and mitigating bacterial colonization. The interplay of surface energy significantly influences bacterial adhesion, and macro surface roughness appears to be a pivotal determining factor. Macro-scale surface roughness not only modulates surface energy but also results in micro-scale topographical features that impact the bactericidal efficacy of nanowire structures. The integration of nanofabrication techniques on surfaces with macro-scale roughness yields multi-hierarchical micro- and nanoscale features, thereby possibly amplifying the bactericidal effect. Pseudomonas aeruginosa is an opportunistic pathogen that can cause serious infections. Moreover, this species has a higher risk of developing antibiotic resistance, which makes treatments for infections extremely difficult. Nanowire structures have demonstrated higher efficacy against P. aeruginosa species, making it a good alternative for fighting P. aeruginosa infections. This study demonstrates that heightened surface roughness amplifies the bactericidal potency of nanowire structures against P. aeruginosa bacterial species. The bactericidal effect reaches its maximum when the average surface roughness value is close to the bacterial cell size. This is contrary to the conventional assumption that the substrate surface must be smooth for the nanostructures to work, as the nanowire structures exhibit robust bactericidal efficacy, even when fabricated on rough surfaces. Therefore, the applicability of bactericidal nanostructures is expanded beyond smooth substrates. Consequently, these nanostructures can be effectively deployed on rugged industrial surfaces, broadening their potential impact across a diverse array of sectors. The widespread adoption of this nanotechnology promises transformative benefits not only to the medical sector but also to various industries. Moreover, by curbing bacterial infections, nanostructured surfaces hold the potential to reduce mortality rates and yield more direct economic dividends through waste reduction and enhanced safety. Ultimately, the widespread implementation of antibacterial nanowire technology stands poised to improve societal well-being and quality of life.