Dual-drive mica-based magnetic composite phase-change materials for photothermal and magnetothermal conversion
Abstract
To extend the applications of phase-change materials to multiple scenarios, Fe3O4 nanoparticles were deposited on the surface of mica with a layer-like structure using a simple method, and composite phase-change materials (CPCMs) with dual-driven energy conversion performance were subsequently obtained via vacuum impregnation. The addition of boron nitride (BN) and cellulose nanofibers (CNFs) endowed the CPCMs with higher thermal conductivity (0.85 W m−1 K−1) and lower specific heat capacity (1.42 MJ m−2 K−1), thereby constructing an effective heat transfer channel. The photothermal conversion efficiency of the CPCMs reached up to 88.36%. The magnetic Fe3O4 nanoparticles endowed the CPCMs with magnetic responsiveness, enabling the phase transition process to complete within just 112 s under a magnetic field. With a high phase-change material loading (82.65%), the CPCMs maintained excellent thermal stability during the energy conversion process. These results provide guidance for the preparation of CPCMs with multiple types of efficient energy conversion.

Please wait while we load your content...