Unveiling thermal treatment effects on the thermomechanical and IR optical properties of chalcogenide hybrid inorganic/organic polymers†
Abstract
We report the influence of post-thermal treatment on the thermomechanical and infrared (IR) optical properties of chalcogenide hybrid inorganic/organic polymers. Using 20 wt% of the tricyclopentadiene (TCPD) crosslinker, elemental sulfur was inverse vulcanized into as-synthesized poly(sulfur80-random-TCPD20) (S80T20) and then thermally treated under different conditions. 140 °C for 12 h was found to be optimal for improving both the thermomechanical and IR optical properties. It is due to the increase in crosslinking density after the reduction of unreacted ES and C
C bonds in the crosslinker, while thermal degradation and oxidation were controlled. Glass transition temperature, storage modulus (at 25 °C), and mid-IR transmittance (1 mm-thick) values of S80T20 increased from 6.5 to 29.2 °C, 1.5 to 2.0 GPa, and 38.5 to 41.2%, respectively. Such a strategy could also be applied to S/Se chalcogen mixture-based CHIPs, endowing them with potential for IR optical applications.

Please wait while we load your content...