Tuning “ligandless” direct arylation polymerization toward less-branching EDOT polymers†
Abstract
Direct arylation polymerization conditions can be classified into phosphine-assisted and “ligandless” conditions. We compared the outcomes of five poly[thiophene-derivative-alt-EDOT]s and PEDOTF polymerized under two kinds of conditions. The results revealed that the “ligandless” conditions led to higher polymerization efficiency compared to phosphine-assisted conditions when employing n-hexyl functionalized EDOT as an arylative substrate and various dibromoarenes as oxidative substrates. Computational studies revealed that the phosphine-assisted conditions follow the standard concerted metalation–deprotonation (CMD). In contrast, the amide-assisted conditions follow electrophilic CMD. This mechanistic difference provides a reasonable explanation for the preference of “ligandless” conditions towards the activation of electron-donating arenes. Additionally, the use of sterically hindered amide solvents and dibromoarenes helps reduce branching defects, preserving the desired linear polymer structure.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        