Secondary electron dynamics in core–shell–satellite nanoparticles: a computational strategy for targeted cancer treatment

Abstract

As the global incidence of cancer escalates, there exists an urgent necessity for innovative therapeutic modalities. While radiation therapy is indispensable in oncology, it faces significant challenges in achieving an optimal equilibrium between tumour ablation and the preservation of surrounding healthy tissues. Noteworthy advancements such as intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D-CRT) have enhanced the precision of treatment; however, their efficacy is still constrained by the accuracy of tumour delineation. The utilization of radiosensitizers, with a particular emphasis on metal nanoparticles, presents a promising avenue for augmenting the susceptibility of neoplastic cells to ionizing radiation. This research examines the potential of core-shell-satellite Fe3O4-SiO2-Au nanoparticles as effective radiosensitizers. By investigating the interaction of individual nanoparticles situated within a water phantom of 20 micrometers in diameter with monochromatic photon beams at energies of 50, 100, and 150 keV, we analyse how variations in the structural composition of Au nanoparticles and their concentrations within these multifaceted nanoparticles influence the efficacy of radiation therapy, employing Monte Carlo simulations corroborated by the general-purpose radiation transport code PHITS. Our investigation aspires to refine nanoparticle-based methodologies to enhance cancer treatment outcomes, potentially facilitating the development of more targeted therapeutic interventions that minimize adverse effects while improving patient survival rates.

Graphical abstract: Secondary electron dynamics in core–shell–satellite nanoparticles: a computational strategy for targeted cancer treatment

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 Jan 2025
Accepted
07 Apr 2025
First published
22 Apr 2025

Nanoscale, 2025, Advance Article

Secondary electron dynamics in core–shell–satellite nanoparticles: a computational strategy for targeted cancer treatment

N. S. Markin, I. S. Gordeev, H. E. Fu, S. I. Ivannikov, Y. B. Kim, A. Y. Samardak, A. S. Samardak, Y. K. Kim and A. V. Ognev, Nanoscale, 2025, Advance Article , DOI: 10.1039/D5NR00270B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements