Hydrogel sensing platforms for monitoring contractility in in vitro cardiac models
Abstract
Heart failure (HF) affects over 64 million people globally, marked by high incidence and mortality rates. Accurate measurements of myocardial contractility are crucial for evaluating cardiac pathomechanisms and monitoring disease progression. Hydrogel sensing devices, known for their flexibility, programmable structures, biocompatibility, and cell adhesion, are ideal for studying cardiac function, minimizing disruption to cardiomyocytes, and supporting long-term culture and monitoring. These platforms, while employing diverse detection principles to accurately measure cell contractility, still face challenges in achieving long-term stability and durability. This review summarizes current methods for monitoring cardiomyocyte contractility, emphasizes the significant impact of substrate mechanical properties on cellular function, and explores recent advances in hydrogel-based platforms for monitoring cell contraction forces. It also discusses the technical challenges and future prospects for measuring cardiac systolic function with these devices.
- This article is part of the themed collection: Recent Review Articles