In situ grown indium-based MOF reticular materials on a copper mesh for highly efficient photocatalytic reduction of Cr(vi) in wastewater†
Abstract
Photocatalytic technology has been regarded as a promising and valuable method for water treatment owing to its safety, efficiency, and eco-friendliness. However, its practical applications are hindered by challenges such as material aggregation and difficulties in recycling and separation, especially with powder-based catalysts. This study introduces a novel photocatalyst (MIL-68(In)-NH2/Cu), synthesized through the in situ growth of an In-based MOF on a copper mesh, where the copper mesh serves as both a carrier for MIL-68(In)-NH2 and forms a heterojunction with it. MIL-68(In)-NH2/Cu exhibited a high specific surface area and a band-gap energy of 2.66 eV, achieving an impressive Cr(VI) reduction efficiency of 98.28%. Mechanistic investigations revealed that the photocatalytic reduction of Cr(VI) relied on the ˙O2− radical and the efficient transfer of photogenerated electrons. Importantly, MIL-68(In)-NH2/Cu demonstrated superior recyclability and sustained high reduction efficiency for Cr(VI), suggesting its potential as an effective solution for Cr(VI) reduction in water treatment applications.

Please wait while we load your content...