Issue 24, 2025

Edge and defect effects on charge distribution in collapsed MoS2 nanotubes

Abstract

Molybdenum disulfide (MoS2) has emerged as a promising material for next-generation electronics and optoelectronic devices. MoS2 nanotubes (NTs) and their collapsed ribbon-like shapes (collapsed NTs) synthesized via chemical vapour transport (CVT) under chemical equilibrium typically exhibit low structural defect densities. However, defects and surface damage can arise during device fabrication or operation, leading to a significant degradation in performance, stability, and operational lifetime. These imperfections also induce hysteresis, which adversely affects the device switching behaviour. While the influence of charge trapping at the MoS2/substrate interfaces, on the MoS2 surface, and at intrinsic defects, such as sulfur vacancies and dangling bonds, on device performance has been extensively studied, MoS2 NTs, with their unique curved morphology, introduce additional charge-trapping mechanisms not observed in planar MoS2 structures. In this work, a combination of scanning tunnelling microscopy (STM), Kelvin probe force microscopy (KPFM), and conductive atomic force microscopy (c-AFM) was employed to examine how structural irregularities, including terminated layers, surface-grown flakes or NTs, and highly strained areas, affect charge injection, redistribution, and the resulting effects on electrical characteristics in collapsed NTs. The results reveal that structural defects act as charge traps, scattering centres, and transport barriers, giving rise to a reduced carrier mobility, localized charge accumulation, and spatially inhomogeneous charge distribution. These findings underscore the crucial role of structural and electrical characterization with nanoscale resolution in the design of defect-tolerant, high-performance devices based on transition metal dichalcogenides (TMDs).

Graphical abstract: Edge and defect effects on charge distribution in collapsed MoS2 nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2025
Accepted
01 Nov 2025
First published
04 Nov 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025,7, 8161-8169

Edge and defect effects on charge distribution in collapsed MoS2 nanotubes

M. Malok, J. Jelenc, A. Pogačnik Krajnc and M. Remškar, Nanoscale Adv., 2025, 7, 8161 DOI: 10.1039/D5NA00771B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements