Microwave characterization of plasmonic antennas through electron energy loss spectroscopy

Abstract

The absence of suitable equipment has long hindered traditional microwave characterization of nano-antennas and their effective design at frequencies beyond several terahertz, limiting the exploration of the myriad applications of plasmonic antennas by the microwave engineering community and necessitating a paradigm shift in characterization methods. This work addresses this challenge by introducing a novel approach employing electron energy loss spectroscopy (EELS) to characterize input impedance and scattering parameters of plasmonic antennas from mid-infrared to optical frequencies. Central to this method is a newly developed theoretical framework that links electron energy loss probability with microwave scattering parameters, crucial for antenna design. We validated this approach through a study of a single plasmonic dipole, finding a good correspondence between the measured EEL spectra and our theoretical model, supported by our developed simulation model. Drawing upon this correlation, we proposed an algorithm for the reverse procedure of extracting S-parameters and input impedance from experimental EEL probability. Spatial profiles of input impedance and S-parameters for a single plasmonic dipole were experimentally characterized across the broad frequency spectrum ranging from 25 to 150 THz and compared with simulation results, revealing a robust correlation, particularly at resonant frequencies. Our non-contact method could serve as an alternative approach to microwave parameters characterization, functioning similarly to a vector network analyzer (VNA) but extending its capabilities to much higher frequencies, where VNAs are not available.

Graphical abstract: Microwave characterization of plasmonic antennas through electron energy loss spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2024
Accepted
19 Mar 2025
First published
19 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025, Advance Article

Microwave characterization of plasmonic antennas through electron energy loss spectroscopy

I. Getmanov, Q. Wang, H. Wang, A. Shamim and D. H. Anjum, Nanoscale Adv., 2025, Advance Article , DOI: 10.1039/D4NA00960F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements