Issue 9, 2025

Green procedures for synthesizing potential hNMDA receptor allosteric modulators through reduction and one-pot reductive acetylation of nitro(hetero)arenes using a superparamagnetic Fe3O4@APTMS@Cp2ZrClx (x = 0, 1, 2) nanocatalyst

Abstract

The conversion of nitro(hetero)arenes to corresponding (hetero)aryl amines and other practical organic compounds plays a crucial role in various sciences, especially environmental remediation and public health. In the current research work, diverse green and efficient strategies for the convenient reduction (hydrogenation) and one-pot two-step reductive acetylation of nitro(hetero)arenes using a core–shell-type mesoporous zirconocene-containing magnetically recoverable nanocomposite (viz. Fe3O4@APTMS@Cp2ZrClx (x = 0, 1, 2)) as a powerful nanocatalytic system have been developed. In the presented organic transformations, the superparamagnetic Fe3O4@APTMS@Cp2ZrClx (x = 0, 1, 2) nanocomposite exhibited satisfactory turnover numbers (TONs) and turnover frequencies (TOFs), along with acceptable reusability. On the other hand, we investigated the potential biological effect of the synthesized (hetero)aryl amines and N-(hetero)aryl acetamides against the transmembrane domain (TMD) of the human N-methyl-D-aspartate (hNMDA) receptor based on molecular docking studies. Furthermore, the drug-likeness properties of our hit compound (viz. N-(3-(1-hydroxyethyl)phenyl)acetamide) have been scrutinized by in silico ADMET analyses.

Graphical abstract: Green procedures for synthesizing potential hNMDA receptor allosteric modulators through reduction and one-pot reductive acetylation of nitro(hetero)arenes using a superparamagnetic Fe3O4@APTMS@Cp2ZrClx (x = 0, 1, 2) nanocatalyst

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2024
Accepted
03 Feb 2025
First published
10 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025,7, 2528-2553

Green procedures for synthesizing potential hNMDA receptor allosteric modulators through reduction and one-pot reductive acetylation of nitro(hetero)arenes using a superparamagnetic Fe3O4@APTMS@Cp2ZrClx (x = 0, 1, 2) nanocatalyst

H. Mousavi, B. Zeynizadeh and F. Sepehraddin, Nanoscale Adv., 2025, 7, 2528 DOI: 10.1039/D4NA00882K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements