Issue 4, 2025

Precision single cell analysis to characterize host dependent antimicrobial response heterogeneity in physiological medium

Abstract

Antimicrobial stewardship plays an essential role in combating the global health threat posed by multidrug-resistant pathogens. Phenotypic antimicrobial susceptibility testing (AST) is the gold standard for analyzing bacterial responses to antimicrobials. However, current AST techniques, which rely on end-point bulk measurements of bacterial growth under antimicrobial treatment in a broth solution, have limitations in resembling the physiological working environment and resolving heterogeneity in response kinetics within the population. In this study, we investigate the responses of uropathogenic bacteria under antimicrobial treatment in individual urine. Our results demonstrate substantial heterogeneity in time–kill kinetics in response to antimicrobials in a host-dependent manner. We also establish a microfluidic gel encapsulation platform for single cell imaging to rapidly resolve heterogeneous subpopulations in response to antimicrobials. The platform captures both bacterial growth and killing within the gel and enables medium exchange to assess the ability of surviving cells to resume growth after antimicrobial removal. Our study lays the foundation for a new generation of precision single cell analysis for personalizing antimicrobial treatment.

Graphical abstract: Precision single cell analysis to characterize host dependent antimicrobial response heterogeneity in physiological medium

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 Sep 2024
Accepted
23 Dec 2024
First published
03 Feb 2025
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2025,25, 714-728

Precision single cell analysis to characterize host dependent antimicrobial response heterogeneity in physiological medium

R. Abe, J. Lee, S. M. Chin, N. Ram-Mohan, K. C. Tjandra, A. M. Bobenchik, K. E. Mach, J. C. Liao, P. K. Wong and S. Yang, Lab Chip, 2025, 25, 714 DOI: 10.1039/D4LC00765D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements