Unveiling the potential of bismuth-based catalysts for electrochemical CO2 reduction
Abstract
Electrochemical CO2 reduction has favorable industrial relevance due to its integrability with renewable energies and controllable product generation. Bismuth-based catalysts have emerged as promising candidates in this regard due to their intriguing electrochemical properties and cost-effectiveness. This review focuses on recent advances in bismuth-based catalysts for the electrochemical reduction of CO2, including synthesis methods and approaches for performance improvements. Insights into product formations using Bi-based catalysts are also presented, where in situ FTIR and Raman spectroscopic studies are highlighted to understand the structural evolution of the catalysts and to decipher the mechanisms of CO2 reduction. Further, recent progress of electrochemical CO2 reduction from an industrial perspective and strategies for further development of the bismuth-based catalysts with high activity, selectivity and stability towards practical applications are discussed.
Keywords: Electrochemical CO2 reduction; Bismuth; Nanomaterials; Electrocatalysts; In situ spectroscopy.