Water-assisted clean electro-preparation of Co3Fe7 in molten salts: its enhanced ferromagnetic properties and hydrogen evolution rate†
Abstract
A clean and efficient method for synthesizing intermetallic Co3Fe7 is reported, based on water-assisted molten salt electrolysis employing the CoFe2O4 electrode, fabricated through the thermo-mechanochemical treatment of iron and cobalt oxides. The electrolysis is conducted at a cell voltage of 1.5 V, achieving an energy consumption of 1.47 kW h kg−1. Upon formation, the synthesized Co3Fe7 serves as an electrode for catalytic hydrogen production, demonstrating a current density of 91.7 mA cm−2. These performances are compared with those of electrolytic Fe (1.49 kW h kg−1 and 96.4 mA cm−2) and electrolytic Co (1.30 kW h kg−1 and 40.8 mA cm−2), both prepared under the same electrolysis potential but with different current–time profiles. The electrolytic Co3Fe7 exhibits superior ferromagnetic properties, with saturation magnetization, remanent magnetization and coercivity values of 157.0 emu g−1, 4.3 emu g−1 and 48.9 Oe, respectively, surpassing values reported in the literature for Fe–Co alloys. The findings suggest a sustainable approach for the green synthesis of Co3Fe7 with enhanced ferromagnetic properties. Additionally, the electrolytic Fe and Co3Fe7 show promise as electrode materials for molten salt hydrogen production.

Please wait while we load your content...