GoFlow: efficient transition state geometry prediction with flow matching and E(3)-equivariant neural networks
Abstract
Transition state (TS) geometries of chemical reactions are key to understanding reaction mechanisms and estimating kinetic properties. Inferring these directly from 2D reaction graphs offers chemists a powerful tool for rapid and accessible reaction analysis. Quantum chemical methods for computing TSs are computationally intensive and often infeasible for larger molecular systems. Recently, deep learning-based diffusion models have shown promise in generating TSs from 2D reaction graphs for single-step reactions. However, framing TS generation as a diffusion process, by design, requires a prohibitively large number of sampling steps during inference. Here we show that modeling TS generation as an optimal transport flow problem, solved via E(3)-equivariant flow matching with geometric tensor networks, achieves over a hundredfold speedup in inference while improving geometric accuracy compared to the state-of-the-art. This breakthrough increase in sampling efficiency and predictive accuracy enables the practical use of deep learning-based TS generators in high-throughput settings for larger and more complex chemical systems. Our method, GoFlow, thus represents a significant methodological advancement in machine learning-based TS generation, bringing it closer to widespread use in computational chemistry workflows.

Please wait while we load your content...