Surfactant Free Microemulsions as Fluid Scaffolds for Thermal Stabilization of Lysozyme

Abstract

The electrostatic forces supported by hydrogen-bonding (H-bonding) interactions in the presence of surfactants stabilizes the microemulsions in general. It would be quite surprising to have surfactant free microemulsions (SFMEs) predominantly stabilized by weak but large number of H-bonding interactions contrary to common wisdom. Herein, the formulation and characterization of SFMEs comprising a hydrophobic ionic liquid (IL) and a deep eutectic solvent (DES) exhibiting high thermal stability is reported. The constituents of DES namely ethylene glycol (EG) and choline chloride (ChCl) act as polar and amphiphile components, respectively and an IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide works as a hydrophobic entity to form SFME. The formation mechanism as well as high temperature thermal stability of SFMEs has been discussed in terms of relative changes in the thickness of interfacial film stabilizing the polar and non-polar pseudo-domains predominantly via alteration in H-bonding interactions, which is supported by computational studies. The sufficiently low interfacial energy in SFMEs has been exploited to thermally stabilize Lysozyme (LYZ) in SFMEs, which showed remarkable thermal stability (up to 150 oC) as revealed by comparative enzyme activity at room temperature after heating, which is quite higher than that observed in buffer. The present study not only adds to the existing knowledge about the formation and stability of SFMEs but is also expected to prompt other researchers for designing relatively greener IL or deep eutectic solvent (DES) based SFMEs for utilization in various biological and other applications.

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2025
Accepted
18 Apr 2025
First published
21 Apr 2025

Phys. Chem. Chem. Phys., 2025, Accepted Manuscript

Surfactant Free Microemulsions as Fluid Scaffolds for Thermal Stabilization of Lysozyme

M. Kaur, M. Singh, R. Kaur, N. Kaur, P. K. Pati and T. S. Kang, Phys. Chem. Chem. Phys., 2025, Accepted Manuscript , DOI: 10.1039/D5CP00678C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements