Issue 21, 2025

TPP-coated Mo-doped W18O49 biodegradable nanomaterials with mitochondria-targeting and pH-responsive properties for synergistic photothermal therapy/chemodynamic therapy/chemotherapy

Abstract

The primary clinical challenge in antitumor nanodrug therapy lies in overcoming the limited tumor accumulation of nanodrugs due to off-target distribution and achieving precise tumor targeting while minimizing damage to healthy tissues. Herein, we developed a novel multifunctional nanodrug delivery system, TPP-MoWO@DOX@CP, which integrates synergistic photothermal therapy (PTT), chemodynamic therapy (CDT), and chemotherapy with mitochondria-targeting and immune modulation capabilities. The system is based on molybdenum (Mo)-doped W18O49 nanobundles (MoWO NBs), which exhibit exceptional photothermal conversion efficiency (46.66%) under NIR-II (1064 nm) laser irradiation and Fenton-like reactivity for generating cytotoxic hydroxyl radicals (˙OH) from endogenous hydrogen peroxide (H2O2). The system shows (1) mitochondria-specific targeting via triphenylphosphine (TPP) functionalization, ensuring precise subcellular localization and enhanced therapeutic efficacy; (2) pH-responsive biodegradability, enabling selective stability in the acidic tumor microenvironment (TME) while promoting rapid degradation in normal tissues to reduce systemic toxicity; and (3) immune modulation through compound polysaccharide (CP) coating, improving biocompatibility and augmenting antitumor immune responses. Under 1064 nm laser irradiation, TPP-MoWO@DOX@CP demonstrated remarkable tumor growth inhibition through the synergistic effects of PTT, CDT, and chemotherapy. Both in vitro and in vivo experiments validated its outstanding photothermal performance, robust ˙OH generation, and biodegradability, showcasing a promising approach for precise cancer therapy with minimal off-target effects. This multifunctional platform addresses critical gaps in current nanomedicine, offering a transformative strategy for clinical translation.

Graphical abstract: TPP-coated Mo-doped W18O49 biodegradable nanomaterials with mitochondria-targeting and pH-responsive properties for synergistic photothermal therapy/chemodynamic therapy/chemotherapy

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2025
Accepted
03 Sep 2025
First published
29 Sep 2025

Biomater. Sci., 2025,13, 6138-6155

TPP-coated Mo-doped W18O49 biodegradable nanomaterials with mitochondria-targeting and pH-responsive properties for synergistic photothermal therapy/chemodynamic therapy/chemotherapy

Y. Ren, W. Yi, J. Gao, N. Wang and D. Zhuang, Biomater. Sci., 2025, 13, 6138 DOI: 10.1039/D5BM00833F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements