Issue 22, 2025

Modulating oxygen release via manipulated microspheres embedded in thermoresponsive hydrogels for enhanced stem cell survival under hypoxia

Abstract

Ensuring a stable oxygen supply for transplanted cells remains a major challenge in the clinical translation of tissue engineering and regenerative medicine. Hypoxic environments caused by insufficient vascularization are a key factor leading to cell death and graft failure. To address this issue, we developed an injectable, oxygen-generating thermoresponsive hydrogel system based on poly(organophosphazene) (PPZ). By modulating the gelatin and calcium peroxide (CaO2) content, we fabricated calcium peroxide-loaded (CPO) microspheres with distinct oxygen release profiles and incorporated them into the PPZ hydrogel, forming a hydrogel based oxygen delivery platform, termed OxyCellgel. This platform, composed solely of PPZ and CPO microspheres, allows for precise control over oxygen release rates and amounts, enabling adaptation to both mild and severe hypoxic environments. The interaction between the microspheres and hydrogel matrix facilitated uniform and sustained oxygen release. Subsequently, human mesenchymal stem cells (hMSCs) were co-delivered with this OxyCellgel system to evaluate cell viability and function under hypoxic conditions. The system significantly enhanced the survival and proliferation of hMSCs and promoted angiogenesis through their paracrine effects under hypoxia. Notably, hMSCs co-encapsulated with OxyCellgel showed markedly improved viability under hypoxic conditions compared to controls. This study presents a hydrogel-based oxygen delivery platform with controllable release kinetics as a promising strategy to improve the efficacy of stem cell-based therapies under diverse hypoxic conditions.

Graphical abstract: Modulating oxygen release via manipulated microspheres embedded in thermoresponsive hydrogels for enhanced stem cell survival under hypoxia

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
29 Mar 2025
Accepted
15 Sep 2025
First published
19 Sep 2025

Biomater. Sci., 2025,13, 6326-6349

Modulating oxygen release via manipulated microspheres embedded in thermoresponsive hydrogels for enhanced stem cell survival under hypoxia

J. Lee, J. Kim, K. W. Bong and S. Song, Biomater. Sci., 2025, 13, 6326 DOI: 10.1039/D5BM00480B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements