Issue 8, 2025

Effect of precursors on carbon dot functionalization and applications: a review

Abstract

Carbon dots (CDs) are a type of carbon-based nanoparticle (NP) that have risen in popularity due to their unique tuneable physicochemical and optical properties. CDs have received a significant amount of attention in biological based applications due to their low cytotoxicity, stable photoluminescence, and small size. They have demonstrated the ability to retain certain properties from their carbon precursors, enabling NP design via precursor selection. Thus, direct functionalization of a CD can be achieved without the need for post synthesis modification. However, CDs derived from the same class of carbon precursor can also have profoundly variable applications. Indicating that, in conjunction with precursor properties, other functional attributes can be imposed on the CD during the synthesis process to enable cross-cutting applications from a single carbon precursor. Here, we will highlight various CD precursors and the resulting multifunctional CDs, as well as rational design of CDs for specific biological and materials science applications via precursor selection.

Graphical abstract: Effect of precursors on carbon dot functionalization and applications: a review

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Critical Review
Submitted
19 Dec 2024
Accepted
04 Mar 2025
First published
19 Mar 2025

Analyst, 2025,150, 1448-1469

Effect of precursors on carbon dot functionalization and applications: a review

S. Strickland, L. Fourroux and D. Pappas, Analyst, 2025, 150, 1448 DOI: 10.1039/D4AN01554A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements