Issue 7, 2024

Water quality indicators influencing the formation and morphology of hydrostatically-formed photogranules

Abstract

Hydrostatic photogranulation represents an intriguing phenomenon with potential applications in aeration-free wastewater treatment. In this process, activated sludge batches transform into photogranules, manifesting as either spherical or disk-dominated shapes. Yet, the factors contributing to this morphological diversity remain unknown. Moreover, the impact of morphology on granule structure and physical characteristics remains poorly understood, posing potential implications for photogranulation in reactors that frequently utilize these hydrostatic granules as seeding materials. This study investigates the influence of water quality parameters on hydrostatic photogranulation and its role in shaping granule morphology. Spherical photogranules exhibited lower chlorophyll a concentration (5.97–7.40 mg L−1) and higher Chl a/b ratio (13−14) than disk-shaped photogranules (Chl a concentration: 8.13–11.70 mg L; a/b ratio: <10), indicating a higher cyanobacteria content in disk-shaped granules. Additionally, spherical photogranules showed significantly lower concentrations of EPS proteins and polysaccharides than disk-shaped granules, suggesting enhanced granulation under EPS limitations. Correlation analysis indicates that higher initial NO3 and total polysaccharides (TPS) increase the likelihood of producing spherical photogranules. Conversely, higher initial Ca2+ and Mg2+ concentrations were observed in cultivations predominantly producing disks. Furthermore, principal component analysis identified Cl, Na+, NH4+, and SO42− as key initial water quality indicators and TPS, tCOD, and VSS as important sludge biomass characteristics that distinguished between different photogranule morphologies. Compared to spherical photogranules, disk-dominated photogranules exhibited higher stiffness and shear resistance, potentially due to increased cyanobacterial and EPS contents. Controlling hydrostatic photogranulation to achieve desired photogranule shapes holds potential for customizing seed granules and thus enhancing the OPG wastewater treatment performance.

Graphical abstract: Water quality indicators influencing the formation and morphology of hydrostatically-formed photogranules

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2024
Accepted
08 May 2024
First published
13 May 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Adv., 2024,3, 1048-1062

Water quality indicators influencing the formation and morphology of hydrostatically-formed photogranules

C. J. Castro, W. C. Kuo-Dahab, T. Jiang, S. Downes, G. Zhang, A. S. Abouhend and C. S. Butler, Environ. Sci.: Adv., 2024, 3, 1048 DOI: 10.1039/D4VA00054D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements