High-performance green-emitting Ca2YScAl2Si2O12:Ce3+ garnet phosphors and their applications in high-quality blue-chip-pumped white LEDs
Abstract
Green phosphors have attracted much attention in recent years due to their great potential for achieving high-quality white light-emitting diode (LED) lighting. Herein, we report the discovery and characterization of a novel green-emitting Ca2YScAl2Si2O12:Ce3+ (abbreviated as CYSAS:Ce3+) garnet-type inorganic phosphor showing outstanding photoluminescence features. A family of CYSAS:Ce3+ samples are intentionally incorporated with different Ce3+ doping concentrations ranging from 1 mol% to 8 mol%, and they were successfully prepared by using the conventional high-temperature solid-state reaction method at 1400 °C calcination temperature and a reducing atmosphere. These CYSAS:Ce3+ phosphors crystallize into the garnet phase with the Ia![[3 with combining macron]](https://www.rsc.org/images/entities/char_0033_0304.gif) d space group, and their crystallographic data are obtained by using the Rietveld refinements. Photoluminescence characterization reveals that the CYSAS:Ce3+ phosphors exhibit broadband excitation spectra in the 250–500 nm spectral range with a peak at 452 nm, which matches well with commercial blue LED chips (440–480 nm). The concentration quenching effect is observed for CYSAS:Ce3+ phosphors, and the related mechanism has been discussed. In particular, under 452 nm excitation, the optimal CYSAS:4%Ce3+ sample produces a broad, asymmetric, green emission band in the 470–750 nm wavelength range with an emission peak at 538 nm and a bandwidth of 121 nm. The corresponding CIE chromaticity coordinates are (0.3662, 0.5446). Notably, luminescence quantum efficiency (QE) measurements demonstrate that the CYSAS:4%Ce3+ sample has an excellent internal QE of 91.1% and an external QE of 51.7%. In addition, temperature-dependent emission properties indicate its good thermal stability (66%@150 °C) and good color stability (chromaticity shift ΔE = 3.15 × 10−3) for the CYSAS:4%Ce3+ phosphor. By combining the CYSAS:4%Ce3+ green phosphor with the 450 nm blue chip and the (Ca,Sr)AlSiN3:Eu2+ commercial red phosphor, a white LED device with excellent light efficiency and high light color quality was fabricated. When the driving current is 20 mA, the LED device exhibits a high color rendering index (92.6), low correlated color temperature (4726 K), and high luminous efficacy (109.89 lm W−1). In summary, the above results show that the CYSAS:Ce3+ phosphor has great application potential in achieving high-quality white LEDs, and it also provides a new exploration idea for the development of new green-emitting phosphors.
d space group, and their crystallographic data are obtained by using the Rietveld refinements. Photoluminescence characterization reveals that the CYSAS:Ce3+ phosphors exhibit broadband excitation spectra in the 250–500 nm spectral range with a peak at 452 nm, which matches well with commercial blue LED chips (440–480 nm). The concentration quenching effect is observed for CYSAS:Ce3+ phosphors, and the related mechanism has been discussed. In particular, under 452 nm excitation, the optimal CYSAS:4%Ce3+ sample produces a broad, asymmetric, green emission band in the 470–750 nm wavelength range with an emission peak at 538 nm and a bandwidth of 121 nm. The corresponding CIE chromaticity coordinates are (0.3662, 0.5446). Notably, luminescence quantum efficiency (QE) measurements demonstrate that the CYSAS:4%Ce3+ sample has an excellent internal QE of 91.1% and an external QE of 51.7%. In addition, temperature-dependent emission properties indicate its good thermal stability (66%@150 °C) and good color stability (chromaticity shift ΔE = 3.15 × 10−3) for the CYSAS:4%Ce3+ phosphor. By combining the CYSAS:4%Ce3+ green phosphor with the 450 nm blue chip and the (Ca,Sr)AlSiN3:Eu2+ commercial red phosphor, a white LED device with excellent light efficiency and high light color quality was fabricated. When the driving current is 20 mA, the LED device exhibits a high color rendering index (92.6), low correlated color temperature (4726 K), and high luminous efficacy (109.89 lm W−1). In summary, the above results show that the CYSAS:Ce3+ phosphor has great application potential in achieving high-quality white LEDs, and it also provides a new exploration idea for the development of new green-emitting phosphors.
- This article is part of the themed collections: Materials for photovoltaic and light emitting devices and Advanced Functional Inorganic Materials for Information Technology and Applications
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        