Issue 43, 2024

Spinel CoFe2O4: a room temperature magnetic semiconductor with optical transparency

Abstract

Finding a suitable ferromagnetic transparent semiconducting material is of utmost importance for the development of advanced devices with unique functionalities. Herein, the electronic, magnetic, and optical attributes of bulk and (111) surfaces of cobalt ferrite (CFO) are comprehensively explored through rigorous first-principles calculations. Bulk CFO and (111) thin films of thickness 1-unit cell (1UC) and 2-unit cell (2UC) with Fe terminations have ferrimagnetic semiconducting behavior with band gaps of 1.82 eV (bulk), 0.64 eV (1UC) and 0.54 eV (2UC). Bulk CFO displays an in-plane magnetic anisotropy energy of −35 μeV per atom, whereas both 1UC and 2UC structures with Fe terminations exhibit −60 and −91 μeV per atom. Bulk CFO has a Curie temperature (TC) of 843 K, and the critical temperature is suppressed in thin films. Nonetheless, we still find a Cuire temperature higher than room temperature. For instance, the calculated Curie temperature is 471 K and 582 K for 1UC and 2UC films with Fe terminations. Besides, the 1UC and 2UC thin films of CFO show optical transparency in the visible range with a transmittance of around ∼94 to 96%. These findings suggest the potential of the CFO bulk and surfaces for application in spintronic and optoelectronic devices at elevated temperatures.

Graphical abstract: Spinel CoFe2O4: a room temperature magnetic semiconductor with optical transparency

Supplementary files

Article information

Article type
Paper
Submitted
19 Apr 2024
Accepted
20 Sep 2024
First published
23 Sep 2024

J. Mater. Chem. C, 2024,12, 17658-17667

Spinel CoFe2O4: a room temperature magnetic semiconductor with optical transparency

I. Khan and J. Hong, J. Mater. Chem. C, 2024, 12, 17658 DOI: 10.1039/D4TC01607F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements