Issue 3, 2024

A decellularized matrix enriched collagen microscaffold for a 3D in vitro liver model

Abstract

The development of liver scaffolds retaining their three-dimensional (3D) structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of an alginate-based platform using a combination of decellularized matrices and collagen to preserve the functionality of liver cells. The scaffolds were characterized using SEM and fluorescence microscopy techniques. The proliferation and functional behaviours of hepatocellular carcinoma HuH7 cells were observed. It was found that the decellularized skin scaffold with collagen was better for maintaining the growth of cells in comparison to other decellularized matrices. In addition, we observed a significant increase in the functional profile once exogenous collagen was added to the liver matrix. Our study also suggests that a cirrhotic liver model should have a different matrix composition as compared to a healthy liver model. When primary rat hepatocytes were used for developing a healthy liver model, the proliferation studies with hepatocytes showed a decellularized skin matrix as the better option, but the functionality was only maintained in a decellularized liver matrix with addition of exogenous collagen. We further checked if these platforms can be used for studying drug induced toxicity observed in the liver by studying the activation of cytochrome P450 upon drug exposure of the cells growing in our model. We observed a significant induction of the CYP1A1 gene on administering the drugs for 6 days. Thus, this platform could be used for drug-toxicity screening studies using primary hepatocytes in a short span of time. Being a microscaffold based system, this platform offers some advantages, such as smaller volumes of samples, analysing multiple samples simultaneously and a minimal amount of decellularized matrix in the matrix composition, making it an economical option compared to a completely dECM based platform.

Graphical abstract: A decellularized matrix enriched collagen microscaffold for a 3D in vitro liver model

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2023
Accepted
02 Dec 2023
First published
04 Dec 2023

J. Mater. Chem. B, 2024,12, 772-783

A decellularized matrix enriched collagen microscaffold for a 3D in vitro liver model

S. De, A. Vasudevan, D. M. Tripathi, S. Kaur and N. Singh, J. Mater. Chem. B, 2024, 12, 772 DOI: 10.1039/D3TB01652H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements