Surfactant templated biogenic nanoporous silica thermal insulation composite†
Abstract
Carbon-sequestration biogenic insulation materials offer a promising solution for sustainable and energy-efficient buildings. However, minimizing energy-intensive manufacturing processes and ensuring a uniform microstructure are essential to achieve widespread application. In this work, we introduce cetyltrimethylammonium bromide (CTAB) surfactant as both synthesis and dispersion template for nanoporous silica to create biogenic straw-based thermal insulation composites. As the amount of nanoporous silica increases to 72 wt%, the elastic insulation composite dried using the solvent exchange method exhibits a density of 0.058 g cm−3, a thermal conductivity of 30.3 mW m−1 K−1 and a flexural modulus of 3.96 MPa, while demonstrating materials circularity and fire retardance. The use of CTAB surfactant effectively captures nanoporous silica, preventing its loss during manufacturing and enhancing the homogeneity and dispersion of the silica within the composite. In addition, the results show that the ethanol solvent exchange drying at ambient conditions provides the optimum thermal insulation performance with less energy consumption compared to freeze-drying.