Issue 41, 2024

A grafted flame-retardant gel polymer electrolyte stabilizing lithium metal for high-safety lithium metal batteries

Abstract

The inflammability and irregular metallic lithium electrodeposits of conventional liquid electrolytes limit their application in next-generation Li metal batteries (LMBs). Therefore, gel polymer electrolytes (GPEs) that offer flame retardancy, good ion transport performance, and stable Li deposition ability to inhibit the growth of lithium dendrites are ideal for LMBs with high safety. In this study, a novel grafted flame-retardant gel polymer electrolyte (C-GPE) is developed by grafting polyethylene glycol (PEG) and 3-aminopropylphosphonic acid (3-APPA). The host polymer is poly(methyl vinyl ether-alt-maleic anhydride), and 1 M LiTFSI in EC/DEC served as the Li salt and plasticizer. The C-GPE considerably enhances LMB performance in two key aspects. First, it exhibited excellent flame-retardant properties. The decomposition of grafted 3-APPA generated PO· free radicals, which effectively captures highly reactive radicals, rendering C-GPE nonflammable and enhancing the safety of LMBs. Second, the highly stable SEI layer containing Li3PO4 and LixPOyFz in C-GPE-15|Li can inhibit lithium dendrite growth, promote uniform Li metal deposition and improve the long-term cycling stability of LMBs.

Graphical abstract: A grafted flame-retardant gel polymer electrolyte stabilizing lithium metal for high-safety lithium metal batteries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Jun 2024
Accepted
17 Sep 2024
First published
18 Sep 2024

J. Mater. Chem. A, 2024,12, 28296-28306

A grafted flame-retardant gel polymer electrolyte stabilizing lithium metal for high-safety lithium metal batteries

S. Chen, Y. Wang, Z. Li, Y. Feng and W. Feng, J. Mater. Chem. A, 2024, 12, 28296 DOI: 10.1039/D4TA04343J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements