Issue 24, 2024

Unlocking the potential of V2O5 decorated on crossed g-C3N4 monolayers derived from synergistic bio-transformation of ZnMn2O4 for antibiotic photodegradation

Abstract

Although the physiochemical merits of g-C3N4-based photocatalysts have garnered increasing interest in the fields of energy and environmental science, insufficient layer detachment has created a gap between fundamental research and practical applications. To unlock the intrinsic potential of g-C3N4, a bio-transformation of the ZnMn2O4 ((6)ZM) gel was employed to introduce highly-ordered modulation caused by steric hindrance during melamine pyrolysis. Phytomediated (6)ZM reorganized traditional carbon nitride into crossed C3N4 (CCN) monolayers, simultaneously engineering an auspicious Z-schematic system ((6)ZM/CCN). Phytoconverted (6)ZM retained the crystalline-amorphous configuration for facile charge transfer and provided a large surface area (288 m2 g−1) that was 2.3 times greater than that of thermally prepared g-C3N4 (TCN) monolayers. Additionally, (6)ZM exhibited a quantum confinement-promoted reduction capability and induced bulging on CCN monolayers to fully utilize photons through multilevel light scattering and reflection. Specific sequential two-step calcination of (6)ZM/CCN, furnishing affordable dual Z-schematic VO–(6)ZM/CCN, was specifically developed to introduce a third component into the structure without incurring additional operational cost or complexity. V2O5 (VO) nanoparticles were thermally anchored on (6)ZM/CCN to achieve highly efficient levofloxacin (LFC) detoxification under visible-light irradiation. After optimizing all effective synthesis parameters and experimental variables, VO–(6)ZM/CCN exhibited unsurpassed activity, achieving complete LFC photodegradation (50 mg L−1) within 120 min, which was 10.7, 8.7, and 24.7 times more kinetically efficient than the photodegradations achieved by (6)ZM, TCN, and VO, respectively. The outstanding performance of VO–(6)ZM/CCN was evident through complete mineralization of LFC, excellent decontamination of pharmaceutical wastewater within 300 min, resistance to performance deterioration during successive cycling runs, and the corresponding postcharacterization. The combination of simultaneous Z-scheme formation with photogenic (6)ZM provides a promising strategy to bridge the gap between experimental investigations and industrial applications of g-C3N4.

Graphical abstract: Unlocking the potential of V2O5 decorated on crossed g-C3N4 monolayers derived from synergistic bio-transformation of ZnMn2O4 for antibiotic photodegradation

Supplementary files

Article information

Article type
Paper
Submitted
20 Mar 2024
Accepted
07 May 2024
First published
21 May 2024

J. Mater. Chem. A, 2024,12, 14619-14635

Unlocking the potential of V2O5 decorated on crossed g-C3N4 monolayers derived from synergistic bio-transformation of ZnMn2O4 for antibiotic photodegradation

A. Bahadoran, N. Ajinkya, M. Sharghi, F. Hasanvandian, Y. Wang, H. Chen, M. Namvari, B. Kakavandi, E. Marsili, M. Galluzzi and S. Ramakrishna, J. Mater. Chem. A, 2024, 12, 14619 DOI: 10.1039/D4TA01886A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements