Issue 2, 2024

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Abstract

The choice of structure directing agents (SDAs) in zeolite synthesis significantly impacts the arrangement of active sites, thereby influencing the stabilization of reaction intermediates with profound implications for catalytic applications. Therefore, understanding the distribution of SDAs along with the substitution of heteroatoms for silicon in zeolites is imperative for tailoring optimized materials for specific applications. This study is centered on the synthesis of all-silica RTH type zeolites in the presence of fluoride, utilizing triisopropyl(methyl)phosphonium as the organic SDA (OSDA). Zeolites produced under varying conditions of time and temperature exhibit differences in their X-ray diffractograms, indicating the presence of two distinct crystalline phases. The 19F NMR spectra confirm the presence of fluoride within the small rth cage and exhibit two distinct signals depending on the sample. The 29Si NMR spectra reveal the existence of penta-coordinated F-SiO4 species, resulting in sixteen non-equivalent Si sites. Through ab initio DFT methods, the stabilization energy and 29Si chemical shielding of several models featuring F-SiO4 situated at all crystallographic sites were computed. Comparison with experimental results enabled the identification of the framework position where the five-coordinate silicon is located, which differs between the two crystalline phases of the as-synthesized RTH zeolites. Consequently, the placement of fluoride in either of these two sites within the RTH zeolite can be controlled during the synthesis. It is expected that this methodology can be extended to manipulate the position of trivalent atoms (e.g., Al3+ or B3+), which can affect the catalytic properties of the RTH zeolite.

Graphical abstract: Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2023
Accepted
23 Nov 2023
First published
24 Nov 2023
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2024,12, 876-891

Crystalline phase transition in as-synthesized pure silica zeolite RTH containing tetra-alkyl phosphonium as organic structure directing agent

J. Martinez-Ortigosa, R. Millán, J. Simancas, M. Hernández-Rodríguez, J. A. Vidal-Moya, J. L. Jordá, C. Martineau-Corcos, V. Sarou-Kanian, M. Boronat, T. Blasco and F. Rey, J. Mater. Chem. A, 2024, 12, 876 DOI: 10.1039/D3TA06071C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements