Issue 3, 2024

Bi-metallic [Cu/Co(6mna)2]n metal organic chalcogenolate frameworks as high-performance electro-catalysts for dye-sensitized solar cells: a ligand-assisted bottom-up synthesis

Abstract

Mercaptonicotinate-based metal organic chalcogenolate frameworks (MOFs), including [Cu2(6mna)(6mn)NH4]n-NO3, [Co2(6mna)2]n-NO3, [Co2(6mna)2]n-Cl, [Cu/Co(6mna)2]n-NO3, and [Cu/Co(6mna)2]n-Cl (6mna = 6-mercaptonicotinic acid; 6mn = 6-mercaptonicotinate), were newly introduced as the electro-catalytic counter electrodes in dye-sensitized solar cells (DSSCs). By using a ligand-assisted bottom-up synthesis, these five types of MOF films were covalently bonded to a conducting substrate to deliver their intrinsic electro-catalytic ability without any additives. The DSSCs coupled with all the carbon cloth/MOF electrodes showed a superior solar-to-electricity conversion efficiency (9.4%–10.0%) to the cell with a traditional carbon cloth/Pt electrode (9.3%), demonstrating their outstanding electrochemical activities. Heterogeneous bi-metallic MOFs, [Cu/Co(6mna)2]n-NO3 and [Cu/Co(6mna)2]n-Cl, outperformed their mono-metallic counterparts by increasing film roughness/porosity and decreasing the activation energy for I/I3. Their remarkable electrochemical performance was attributed to the successful synergistic effect, where [Cu2(6mna)(6mn)NH4]n-NO3 provided facile charge transfer via its 2D (–Cu–S–)n planes, while [Co2(6mna)2]n supplied large surface area and multiple electro-catalytic active sites through its helical (–Co–S–)n chains. With the use of different redox mediators (iodide, Co-phenanthroline, and Cu-neocuproine), the optimal carbon cloth/[Cu/Co(6mna)2]n-Cl electrode also showed better electro-catalytic ability and long-term stability than carbon cloth/Pt. Under room light illumination, higher cell efficiencies were obtained at 1.0 klux (19.5% for an office), 3.0 klux (23.3% for a shopping window), and 6.0 klux (26.4% for a lampshade), revealing the potential of mercaptonicotinate-based bi-metallic MOFs to be applied in various electrochemical devices.

Graphical abstract: Bi-metallic [Cu/Co(6mna)2]n metal organic chalcogenolate frameworks as high-performance electro-catalysts for dye-sensitized solar cells: a ligand-assisted bottom-up synthesis

Supplementary files

Article information

Article type
Paper
Submitted
18 Aug 2023
Accepted
04 Dec 2023
First published
04 Dec 2023

J. Mater. Chem. A, 2024,12, 1595-1608

Bi-metallic [Cu/Co(6mna)2]n metal organic chalcogenolate frameworks as high-performance electro-catalysts for dye-sensitized solar cells: a ligand-assisted bottom-up synthesis

C. Lai, Y. Lee, Y. Jiang, C. Lin, G. Kumar, M. H. Huang and C. Li, J. Mater. Chem. A, 2024, 12, 1595 DOI: 10.1039/D3TA04970A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements