Issue 20, 2024

Inelastic effects in bulge formation of inflated polymer tubes

Abstract

When a soft tube is inflated, it may sometimes show a bulge instability wherein a portion of the tube inflates much more than the rest. The bulge instability is well-understood for hyperelastic materials. We examine inflation of polyurethane tubes whose material behavior is not strictly hyperelastic. Upon inflating at constant rate, the tubes deform into a variety of shapes including irregular axisymmetric shapes with multiple localized bulges, a single axially-propagating bulge, or homogeneous cylindrical shapes. In all cases regardless of the inflation mode, the pressure first rises to a maximum, and then gradually reduces towards a plateau. We document numerous differences as compared to hyperelastic tubes. Most notably a pressure maximum can appear even without bulging, whereas for hyperelastic tubes, a pressure maximum is necessarily accompanied by bulging. Further, the decrease in pressure beyond the maximum occurs gradually over timescales as long as an hour, whereas bulging of hyperelastic tubes induces an instantaneous drop in pressure. We also observe permanent deformation upon deflation, a decrease in the pressure maximum during a subsequent second inflation, and more severe bulge localization at low inflation rates. Existing theory of hyperelastic tube inflation cannot capture the observed behaviors, even qualitatively. Finite element simulations suggest that many of the observations can be explained by viscoelasticity, specifically that a slow material response allows the pressure to remain high for long durations, which in turn allows growth of multiple bulges.

Graphical abstract: Inelastic effects in bulge formation of inflated polymer tubes

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2024
Accepted
01 May 2024
First published
06 May 2024
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2024,20, 4152-4164

Inelastic effects in bulge formation of inflated polymer tubes

F. Rouhani, J. W. Pazin, B. A. Young, Q. Liu and S. S. Velankar, Soft Matter, 2024, 20, 4152 DOI: 10.1039/D4SM00241E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements