Issue 14, 2024

Shear zones in granular mixtures of hard and soft particles with high and low friction

Abstract

Granular materials show inhomogeneous flows characterized by strain localization. When strain is localized in a sheared granular material, rigid regions of a nearly undeformed state are separated by shear bands, where the material yields and flows. The characteristics of the shear bands are determined by the geometry of the system, the micromechanical material properties, and the kinematics at the particle level. For a split-bottom shear cell, recent experimental work has shown that mixtures of hard, frictional and soft, nearly frictionless particles exhibit wider shear zones than samples with only one of the two components. To explain this finding, we investigate the shear zone properties and the stress response of granular mixtures using discrete element simulations. We show that both interparticle friction and elastic modulus determine the shear-band properties and packing density of granular mixtures of various mixing ratios, but their stress response depends strongly on the interparticle friction. Our study provides a fundamental understanding of the micromechanics of shear band formation in granular mixtures.

Graphical abstract: Shear zones in granular mixtures of hard and soft particles with high and low friction

Article information

Article type
Paper
Submitted
22 Jan 2024
Accepted
26 Feb 2024
First published
28 Feb 2024
This article is Open Access
Creative Commons BY license

Soft Matter, 2024,20, 3118-3130

Shear zones in granular mixtures of hard and soft particles with high and low friction

A. P. Singh, V. Angelidakis, T. Pöschel and S. Roy, Soft Matter, 2024, 20, 3118 DOI: 10.1039/D4SM00100A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements