Issue 13, 2024

Preferential electrostatic interactions of phosphatidic acid with arginines

Abstract

Phosphatidic acid (PA) is an anionic lipid that preferentially interacts with proteins in a diverse set of cellular processes such as transport, apoptosis, and neurotransmission. One such interaction is that of the PA lipids with the proteins of voltage-sensitive ion channels. In comparison to several other similarly charged anionic lipids, PA lipids exhibit much stronger interactions. Intrigued and motivated by this finding, we sought out to gain deeper understanding into the electrostatic interactions of anionic lipids with charged proteins. Using the voltage sensor domain (VSD) of the KvAP channel as a model system, we performed long-timescale atomistic simulations to analyze the interactions of POPA, POPG, and POPI lipids with arginines (ARGs). Our simulations reveal two mechanisms. First, POPA is able to interact not only with surface ARGs but is able to snorkel and interact with a buried arginine. POPG and POPI lipids on the other hand show weak interactions even with both the surface and buried ARGs. Second, deprotonated POPA with −2 charge is able to break the salt-bridge connection between VSD protein segments and establish its own electrostatic bond with the ARG. Based on these findings, we propose a headgroup size hypothesis for preferential solvation of proteins by charged lipids. These findings may be valuable in understanding how PA lipids could be modulating kinematics of transmembrane proteins in cellular membranes.

Graphical abstract: Preferential electrostatic interactions of phosphatidic acid with arginines

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2024
Accepted
15 Feb 2024
First published
02 Mar 2024

Soft Matter, 2024,20, 2998-3006

Preferential electrostatic interactions of phosphatidic acid with arginines

N. Thomas, W. Combs, K. K. Mandadapu and A. Agrawal, Soft Matter, 2024, 20, 2998 DOI: 10.1039/D4SM00088A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements