The narrow escape problem of a chiral active particle (CAP): an optimal scheme†
Abstract
We report a simulation study on the narrow escape kinetics of a chiral active particle (CAP) confined to a circular domain with a narrow escape opening. The study's main objective is to optimize the CAP's escape chances as a function of the relevant parameters, such as translational and rotational speeds of the CAP, domain size, etc. We identified three regimes in the escape kinetics, namely the noise-dominated regime, the optimal regime, and the chiral activity-dominated regime. In particular, the optimal regime is characterized by an escape scheme that involves a direct passage to the domain boundary at first and then a unidirectional drift along the boundary towards the exit. Furthermore, we propose a non-dimensionalization approach to optimize the escape performance across microorganisms with varying motile characteristics. Additionally, we explore the influence of the translational and rotational noise on the CAP's escape kinetics.
Please wait while we load your content...