Issue 16, 2024

Contact networks and force transmission in aggregates of hexapod-shaped particles

Abstract

Hexapods, consisting of three mutually orthogonal arms, have been utilized as a representative nonconvex shape to demonstrate the impact of interlocking on the strength properties of granular materials. Nevertheless, the microstructural characteristics of hexapod packings, which underlie their strength, have remained insufficiently characterized. We use particle dynamics simulations to build isotropically-packed aggregates of hexapods and we analyze the effects of aspect ratio and interparticle friction on the microstructure and force transmission. We find that the packing fraction is an unmonotonic function of aspect ratio due to competition between steric exclusions and interlocking. Interestingly, the contact coordination number declines considerably with friction coefficient, showing the stronger effect of friction on the stability of hexapod packings as compared with sphere packings. The pair distribution functions show that local ordering due to steric exclusions disappears beyond the aspect ratio 3 and the hexapods touch their second neighbors. Remarkably, hexapods of aspect ratio 3 tend to align with their neighbors and form locally ordered structures, implying a contact coordination number which is highly sensitive to the confining pressure. We also show that the probability density function of forces between hexapods is similar to that of sphere packings but with broadening exponential fall-off of strong forces as aspect ratio increases. Finally, the elastic bulk modulus of the aggregates is found to increase considerably with aspect ratio as a consequence of the rapid increase of contact density and the number of contacts with second neighbors.

Graphical abstract: Contact networks and force transmission in aggregates of hexapod-shaped particles

Article information

Article type
Paper
Submitted
29 Dec 2023
Accepted
13 Mar 2024
First published
15 Mar 2024
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2024,20, 3411-3424

Contact networks and force transmission in aggregates of hexapod-shaped particles

T. Tran, S. Nezamabadi, J. Bayle, L. Amarsid and F. Radjai, Soft Matter, 2024, 20, 3411 DOI: 10.1039/D3SM01762A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements