Issue 18, 2024

Particle-based and continuum models for confined nematics in two dimensions

Abstract

We use the particle-based stochastic multi-particle collision dynamics (N-MPCD) algorithm to simulate confined nematic liquid crystals in regular two-dimensional polygons such as squares, pentagons and hexagons. We consider a range of values of the nematicities, U, and simulation domain sizes, R, that canvass nano-sized polygons to micron-sized polygons. We use closure arguments to define mappings between the N-MPCD parameters and the parameters in the continuum deterministic Landau-de Gennes framework. The averaged N-MPCD configurations agree with those predicted by Landau-de Gennes theory, at least for large polygons. We study relaxation dynamics or the non-equilibrium dynamics of confined nematics in polygons, in the N-MPCD framework, and the kinetic traps bear strong resemblance to the unstable saddle points in the Landau-de Gennes framework. Finally, we study nematic defect dynamics inside the polygons in the N-MPCD framework and the finite-size effects slow down the defects and attract them to polygon vertices. Our work is a comprehensive comparison between particle-based stochastic N-MPCD methods and deterministic/continuum Landau-de Gennes methods, and this comparison is essential for new-age multiscale theories.

Graphical abstract: Particle-based and continuum models for confined nematics in two dimensions

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2023
Accepted
03 Apr 2024
First published
03 Apr 2024

Soft Matter, 2024,20, 3755-3770

Particle-based and continuum models for confined nematics in two dimensions

H. Híjar and A. Majumdar, Soft Matter, 2024, 20, 3755 DOI: 10.1039/D3SM01684F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements