Effects of solar thermal energy on district heating systems: the case of parabolic trough collectors in a high-latitude region
Abstract
This study investigates primary energy use and CO2 emission reduction potential resulting from the integration of solar thermal heating in biomass-based district heating systems in high-latitude regions. A newly commissioned solar thermal system based on parabolic trough collectors for an existing district heating network in Härnösand, Sweden, is used as a case study, and its hourly one-year measured data are used as inputs for the analysis. The changes in operation and fuel use for local district heat production are extended to a regional context, considering the short- and long-term perspectives of the energy system. The results show that during the studied period, the solar water heating system provided 335 MWh of heat to the existing district heating system with a supply/return temperature of approximately 80/45 °C. Consequently, 339–382 MWh of biomass fuel consumption could be reduced annually with such an installation, depending on the district heat production technologies being substituted. An annual CO2 reduction of 65.3–189 tons can be achieved in an overall energy system perspective when the saved biomass substitutes fossil fuels. The reduction of CO2 emission depends on the fuels being substituted and energy conversion technology.
- This article is part of the themed collection: Recent Open Access Articles