Photoinduced copper-catalyzed asymmetric cyanoalkylalkynylation of alkenes, terminal alkynes, and oximes†
Abstract
The asymmetric dicarbofunctionalization of alkenes via a radical relay process can provide routes to diverse hydrocarbon derivatives. Three-component carboalkynylation, limited to particular alkyl halides and using readily available cycloketone oxime esters as redox-active precursors, is restricted by the available pool of suitable chiral ligands for broadening the redox potential window of copper complexes and simultaneously creating the enantiocontrol environment. Herein, we report a new hybrid tridentate ligand bearing a guanidine–amide–pyridine unit for photoinduced copper-catalyzed cyanoalkylalkynylation of alkenes. Leveraging the copper catalyst’s redox capability is achieved via merging the electron-rich ligand with a readily organized configuration and enhanced absorption in the visible light range, which also facilitates the enantioselectivity. The generality of the catalyst system is exemplified by the efficacy across a number of alkenes, terminal alkynes and cycloketone oxime esters, working smoothly to give alkyne-bearing nitriles with good yields and excellent enantioselectivity. A mechanistic study reveals that the chiral copper catalyst meets the requirements of possessing sufficient reduction ability, good light absorption properties, and appropriate steric hindrance.

Please wait while we load your content...