Issue 43, 2024

Visible-light-responsive hybrid photocatalysts for quantitative conversion of CO2 to highly concentrated formate solutions

Abstract

Photocatalysts can use visible light to convert CO2 into useful products. However, to date photocatalysts for CO2 conversion are limited by insufficient long-term stability and low CO2 conversion rates. Here we report hybrid photocatalysts consisting of conjugated polymers and a ruthenium(II)–ruthenium(II) supramolecular photocatalyst which overcome these challenges. The use of conjugated polymers allows for easy fine-tuning of structural and optoelectronic properties through the choice of monomers, and after loading with silver nanoparticles and the ruthenium-based binuclear metal complex, the resulting hybrid systems displayed remarkably enhanced activity for visible light-driven CO2 conversion to formate. In particular, the hybrid photocatalyst system based on poly(dibenzo[b,d]thiophene sulfone) drove the very active, durable and selective photocatalytic CO2 conversion to formate under visible light irradiation. The turnover number was found to be very high (TON = 349 000) with a similarly high turnover frequency (TOF) of 6.5 s−1, exceeding the CO2 fixation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in natural photosynthesis (TOF = 3.3 s−1), and an apparent quantum yield of 11.2% at 440 nm. Remarkably, quantitative conversion of CO2 (737 μmol, 16.5 mL) to formate was achieved using only 8 mg of the hybrid photocatalyst containing 80 nmol of the supramolecular photocatalyst at standard temperature and pressure. The system sustained photocatalytic activity even after further replenishment of CO2, yielding a very high concentration of formate in the reaction solution up to 0.40 M without significant photocatalyst degradation within the timeframe studied. A range of experiments together with density functional theory calculations allowed us to understand the activity in more detail.

Graphical abstract: Visible-light-responsive hybrid photocatalysts for quantitative conversion of CO2 to highly concentrated formate solutions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
07 Aug 2024
Accepted
05 Oct 2024
First published
07 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 18146-18160

Visible-light-responsive hybrid photocatalysts for quantitative conversion of CO2 to highly concentrated formate solutions

E. McQueen, N. Sakakibara, K. Kamogawa, M. A. Zwijnenburg, Y. Tamaki, O. Ishitani and R. S. Sprick, Chem. Sci., 2024, 15, 18146 DOI: 10.1039/D4SC05289G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements