Issue 45, 2024

Synthesis of highly soluble zirconium organic cages by iodine substitution toward a CO2/N2 separation membrane

Abstract

Metal organic cages (MOCs) show promise as fillers in mixed-matrix membranes (MMMs) for gas separation; highly soluble MOCs are desirable for fabrication of high-compatibility membranes. Herein, we report an iodine substitution strategy to substantially increase the MOC solubility. The synthesized MOC of ZrT-NH2-I possesses over 10-fold higher solubility than the parent ZrT-NH2 in organic solvents whilst retaining the original molecular structure and permanent porosity. Such enhanced solubility allows for the effective integration of ZrT-NH2-I with an amidoxime polymer of intrinsic microporosity (PIM-PAO), resulting in a compatible MMM with a uniform distribution of MOC. The ZrT-NH2-I@PIM-PAO MMM demonstrates a CO2 permeability of 1377 barrer and a CO2/N2 gas selectivity of 45 which is 45 times that of the membrane made from ZrT-NH2. The permeability-selectivity performance not only surpasses the 2008 upper bound, but also exceeds those of currently available MMMs.

Graphical abstract: Synthesis of highly soluble zirconium organic cages by iodine substitution toward a CO2/N2 separation membrane

Supplementary files

Article information

Article type
Edge Article
Submitted
30 Jul 2024
Accepted
17 Oct 2024
First published
28 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 19013-19021

Synthesis of highly soluble zirconium organic cages by iodine substitution toward a CO2/N2 separation membrane

J. Dong, D. Gai, G. Cha, Q. Pan, J. Liu, X. Zou and G. Zhu, Chem. Sci., 2024, 15, 19013 DOI: 10.1039/D4SC05080K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements