A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases

Abstract

Bioinformatics-guided metabolomics is a powerful means for the discovery of novel natural products. However, the application of such metabologenomics approaches on microbial polyketides, a prominent class of natural products with diverse bioactivities, remains largely hindered due to our limited understanding on the mass spectrometry behaviors of these metabolites. Here, we present a metabologenomics approach for the targeted discovery of polyketides biosynthesized by modular type I polyketide synthases. We developed the NegMDF workflow, which uses mass defect filtering (MDF) supported by bioinformatic structural prediction, to connect the biosynthetic gene clusters to corresponding metabolite ions obtained under negative ionization mode. The efficiency of the NegMDF workflow is illustrated by rapid characterization of 22 polyketides synthesized by three gene clusters from a well-characterized strain Streptomyces cattleya NRRL 8057, including cattleyatetronates, new members of polyketides containing a rare tetronate moiety. Our results showcase the effectiveness of the MDF-based metabologenomics workflow for analyzing microbial natural products, and will accelerate the genome mining of microbial polyketides.

Graphical abstract: A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
24 Jun 2024
Accepted
01 Nov 2024
First published
04 Nov 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases

R. Liu, Z. Zhang, M. Li and L. Zhang, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D4SC04174G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements