Issue 34, 2024

Photosensitizer-free singlet oxygen generation via a charge transfer transition involving molecular O2 toward highly efficient oxidative coupling of arylamines to azoaromatics

Abstract

Photosensitizer (PS)-mediated generation of singlet oxygen, O2 (a1Δg) is a well-explored phenomenon in chemistry and biology. However, the requirement of appropriate PSs with optimum excited state properties is a prerequisite for this approach which limits its widespread application. Herein, we report the generation of O2 (a1Δg) via direct charge-transfer (CT) excitation of the solvent–O2 (X3Σg) collision complex without any PS and utilize it for the catalyst-free oxidative coupling of arylamines to azoaromatics under ambient conditions in aqueous medium. Electron paramagnetic resonance (EPR) spectroscopy revealed the formation of O2 (a1Δg) upon direct excitation with 370 nm light. The present approach shows broad substrate scope, remarkably fast reaction kinetics (90 and 40 min under an open and O2 atm, respectively), high selectivity (100%), and excellent yields (up to 100%), and works well for both homo- and hetero-coupling of arylamines. The oxidative coupling of arylamines was found to proceed through the generation of amine radicals via electron transfer (ET) from amines to O2 (a1Δg). Notably, electron-rich amines show higher yields of azo products compared to electron-deficient amines. Detailed mechanistic investigations using various spectroscopic tools revealed the formation of hydrazobenzene as an intermediate along with superoxide radicals which subsequently transform to hydrogen peroxide. The present study is unique in the way that molecular O2 simultaneously acts as a light-absorbing chromophore (solvent–O2 complex) as well as an efficient oxidant (O2 (a1Δg)) in the same reaction. This is the first report on the efficient, selective, and sustainable synthesis of azo compounds in aqueous medium under an ambient atmosphere without any PCs/PSs and paves the way for further in-depth understanding of the chemical reactivity of O2 (a1Δg) generated directly via CT excitation of the solvent–O2 complex toward various photochemical and photobiological transformations.

Graphical abstract: Photosensitizer-free singlet oxygen generation via a charge transfer transition involving molecular O2 toward highly efficient oxidative coupling of arylamines to azoaromatics

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Jun 2024
Accepted
26 Jul 2024
First published
02 Aug 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 13949-13957

Photosensitizer-free singlet oxygen generation via a charge transfer transition involving molecular O2 toward highly efficient oxidative coupling of arylamines to azoaromatics

S. Singh and T. K. Mukherjee, Chem. Sci., 2024, 15, 13949 DOI: 10.1039/D4SC04115A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements